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ABSTRACT 

This paper presents the kinematics and dynamics of a 

spherical robot with a mechanical driving system that consists of 

four cable-actuated moving masses. Four cable-pulley systems 

control four tetrahedrally-located movable masses and the robot 

functions by shifting its center of mass to create rolling torque. 

The cable actuation decreases overall mass and, therefore, allow 

for less energy expenditure, as compared to other moving mass 

mechanisms that translate the masses by powered-screws. 

Additionally, the design allows the center of mass for the static 

(spherical shell, electronics, motors etc.) and dynamic mass 

(moving masses) to be at the geometric center at any given time, 

therefore has potential for tumbleweeding when needed. The 

derived equations of motion are verified by means of 

simulations. 
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1.  INTRODUCTION 
Spherical robots, which are mobile robots that travel by 

rolling on a spherical shell, have drawn attention due to their 

advantages over legged- and wheeled-robots. For instance, they 

have an inherent stability as they can be designed to move from 

any initial orientation. They can be designed as self-contained 

mechanisms in the sense that the propulsion system can be 

confined within the robot making them ideal for dangerous 

environments such as search & rescue operations that may 

require traversing in debris and military applications. Other 

applications include surveillance [1], space exploration missions 

[2], environmental screening [3], marine exploration [4], and 

child development [5]. Additionally, as any mobile robot, they 

can be programmed to receive commands from a remote location 

or move autonomously in environments based on sensor 

information. 

There are several driving mechanisms that propel spherical 

robots based on sprung central member [6], car-driven spherical 

shell [7], moving masses [8-9], and conservation of angular 

momentum [10]. Among these driving principles, moving 

masses may be considered to be the most versatile due to its 

simple design, obstacle avoidance and climbing capability, and 

mobility in enclosed areas [6]—mostly owing to its designs 

suitability for omnidirectional motion. 

Some of the initial designs that started the research on 

spherical robots included in Halme et al. [11] and Bicchi et al. 

[12]. Bhattacharya and Agrawal [13] used two perpendicular 

rotors, while Joshi and Banavar [14] used four rotors to achieve 

omnidirectionality by means of conservation of angular 

momentum and by having internal flywheels that are tilted to 

induce rolling of the sphere. Gajamohan et al. [15] used three 

rotors in a cube robot to rotate and balance omnidirectionally. A 

few spherical robots move by distorting or transforming their 

outer shell, or by simply using the environment’s wind similar to 

tumbleweed. Sugiyama et al. [16] use shape-memory alloy to 

deform and roll wheels and spheres, while Wait et al. [17] and 

Artusi et al. [18] deform panels on a robot’s shell via air bladders 

and dielectric actuators, respectively. 

The main difference between the spherical robots that were 

designed in the past appear to be mainly based on their 

mechanical driving principles [19]. Despite their desirable 

features, the challenge with spherical robots stems from trying to 

solve the complex ball-on-a-plane problem. Therefore, spherical 

robots tend to require either sophisticated control algorithms 

and/or limitations imposed on the trajectory planning that they 

can follow in any indoor or outdoor terrain. For instance, 

omnidirectionality, one of the most significant advantages of a 
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spherical robot, may be sacrificed in order to simplify the control 

problem. 

In this paper, we present a spherical robot that has four 

cable-actuated masses as the propulsion system. The following 

sections present the overall design of the robot, its equations of 

motion, and simulation results verifying the derived equations. 

We conclude with some remarks and discussion for future work. 

 

2.  DESIGN 
The following sections provide the details on the mechanical 

design, kinematics, and dynamics of the spherical robot with the 

cable-actuated driving mechanism.  

 

2.1 Mechanical Design 

The design, as depicted in Figure 1, incorporates four 

tetrahedrally-located motors that move four masses (one per 

motor) along a straight guide that connects the center of the 

spherical shell to the inner boundary of the same shell. In order 

to prevent complications due to any potential slacking of the 

cables during operation and the rotation of the masses about their 

sliding axes, slender triangular guide rods are included for each 

moving mass (Figure 2). The masses are free to move along the 

guide rail and are moved forward/backward by means of the 

motors connected to each mass via cables (Figures 1 & 2). The 

current configuration of the robot has the center of mass at the 

geometric center of the static mass; therefore, the overall center 

of mass can be arranged to be at the geometric center any time 

by locating the masses distributed in a symmetrical manner. 

 

2.2 Kinematics 

To describe the dynamics of the four-pendulum mechanism, 

we define six inertial frames: a static World frame, a Body frame 

centered on the sphere’s center of mass, and four mass frames 

(numbered 1 to 4) centered on the corresponding point mass. The 

mechanism and frames are shown in Figure 3.   

The Body frame rotates in the World frame using z-x’-z” 

intrinsic Euler notation with angles 𝜙, 𝜃, and 𝜓, and translates 

with x and y.  For simplicity, the frame is assumed to also be at 

the sphere’s geometric center such that it does not translate in the 

vertical direction.  The homogeneous standard rotation and 

translation matrices for the Body are 𝑹𝜙, 𝑹𝜃, 𝑹𝜓, and 𝑫𝑥𝑦 , with 

total transformation from Body to World is: 

 

𝑻𝐵
𝑊 = 𝑫𝑥𝑦𝑹𝜙𝑹𝜃𝑹𝜓 (1) 

 

The sphere’s position in the world is: 

 

𝒑𝑆 = 
𝑊 𝑻[0 0 0 1]T =𝐵

𝑊 [𝑥 𝑦 0 1]T (2) 

 

The ith mass frame is defined such that the xi-axis is aligned with 

and the zi-axis is perpendicular to the corresponding guiding rod.  

The transformation matrix from i to the center of the sphere is:  

 

𝑻𝑖 = [

0
𝑰3𝑥3 0

𝑑𝑖

0 0 0 1

] (3) 

 

where 𝑑𝑖 is the distance between the center of mass of the sphere 

and the moving mass on the zi-axis, and 𝑰3𝑥3 is the identity 

matrix. The motors are mounted in a tetrahedral pattern defined 

by the tetrahedral angle 𝜀 = cos−1(−1
3⁄ ) ≈ 109.5° and 120° 

rotations about the z-axis, represented by rotation matrices 

(using notation c and s for cosine and sine): 

 

𝑹𝜀 = [

𝑐𝜀 0 𝑠𝜀 0
0 1 0 0

−𝑠𝜀 0 𝑐𝜀 0
0 0 0 1

] 

 

𝑹120 = [

𝑐120° −𝑠120° 0 0
𝑠120° 𝑐120° 0 0

0 0 1 0
0 0 0 1

] 

(4) 

 

 

 
Figure 1. CAD representation of the spherical 

robot (half of the shell is shown). 

 

 
 
 

(a) 

 

 
(b) 

 

 
(c) 

Figure 2. (a) Cable-actuation mechanism (shown for a 

single spoke), (b) Close-up view of the shell connection, and 

(c) Close-up view of the motor-pulley system. 
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Figure 3. Schematic representation of the driving 

mechanism (masses are depicted as point masses). 

 

Therefore, the transformations for the four masses are:  

 

𝑻1
𝐵 = 𝑻𝑖=1 

𝑻2
𝐵 = 𝑹𝜀𝑻𝑖=2 

𝑻3
𝐵 = 𝑹120𝑹𝜀𝑻𝑖=3 

𝑻4
𝐵 = 𝑹120

T 𝑹𝜀𝑻𝑖=4 

(5) 

 

Mass i is located at:  

 

𝒑𝑖 = 
𝑊 𝑻𝐵

𝑊 𝑻𝑖
𝐵 [0 0 0 1]𝑇 = [𝑥𝑖 𝑦𝑖 𝑧𝑖 1]𝑇 

 

(6) 

 

 

The system therefore has nine generalized coordinates: the three 

Euler angles, the two translations, and the four parameters 

defining the relative distance of the masses with respect to the 

center of mass of the sphere: 

 

𝒒 = [𝜙, 𝜃, 𝜓, 𝑥, 𝑦, 𝑑1, 𝑑2, 𝑑3, 𝑑4]
𝑇 (7) 

 

The translational velocities of the sphere and masses are the time 

derivatives of the p vectors as shown above: 

 

�̇�𝑠 = [�̇� �̇� 0 0]𝑇 
𝑊  (8) 

�̇�𝑖 = 
𝑊

𝑑

𝑑𝑡
( 𝑻𝐵
𝑊 𝑻𝑖

𝐵 [0 0 0 1]𝑇) 

= [�̇�𝑖 �̇�𝑖 �̇�𝑖 0]𝑇 

(9) 

 

The mechanism is to be simulated in MATLAB, so it is 

advantageous to rewrite the �̇�𝑖 
𝑊  equation to eliminate time 

derivatives of functions.  This can be done by using the chain 

rule: 

�̇�𝑖 = [
𝜕 𝒑𝑖 

𝑊

𝜕𝑞1

𝜕 𝒑𝑖 
𝑊

𝜕𝑞2

⋯
𝜕 𝒑𝑖 

𝑊

𝜕𝑞9

] 
𝑊 �̇� (10) 

 

The angular velocities of the sphere in World and Body 

coordinates are: 

𝝎𝑠 = 
𝑊 �̇� + �̇� + �̇� = [

0
0
�̇�
0

] + 𝑹𝜙 [

�̇�
0
0
0

] + 𝑹𝜙𝑹𝜃 [

0
0
�̇�
0

] 

=

[
 
 
 
�̇�𝑐𝜙 + �̇�𝑠𝜙𝑠𝜃

�̇�𝑠𝜙 − �̇�𝑐𝜙𝑠𝜃

�̇� + �̇�𝑐𝜃
0 ]

 
 
 

= [

0 𝑐𝜙 𝑠𝜙𝑠𝜃 0
0 𝑠𝜙 −𝑐𝜙𝑠𝜃 0
1 0 𝑐𝜃 0
0 0 0 1

]

[
 
 
 
�̇�

�̇�
�̇�
0]
 
 
 
 , 

(11) 

 

and 

𝝎𝑠 = 
𝐵 𝑹𝜓

−1𝑹𝜃
−1 [

0
0
�̇�
0

] + 𝑹𝜓
−1 [

�̇�
0
0
0

] + [

0
0
�̇�
0

] 

= [

𝑠𝜓𝑠𝜃 𝑐𝜓 0 0
𝑐𝜓𝑠𝜃 −𝑠𝜓 0 0
𝑐𝜃 0 1 0
0 0 0 1

]

[
 
 
 
�̇�

�̇�
�̇�
0]
 
 
 
. 

(12) 

 

It is advantageous to define both – as shown later, the World 

form is needed for the constraint equations, while the Body form 

is used with the (Body-frame) inertia for the kinetic energy. 

 

2.3 Dynamics 

 

The Lagrange equations of motion and generalized coordinates 

are 

𝐿 = 𝐾𝑡𝑜𝑡𝑎𝑙 − 𝑈𝑡𝑜𝑡𝑎𝑙  

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�𝑘

) −
𝜕𝐿

𝜕𝑞𝑘

= ∑ 𝜆𝑖𝑎𝑖𝑘

𝑛

𝑖=1

+ 𝐹𝑘 
(13) 

 

where 𝐿 is the Lagrangian, 𝐾𝑡𝑜𝑡𝑎𝑙and 𝑈𝑡𝑜𝑡𝑎𝑙  are the system’s 

kinetic and potential energies, k corresponds to the generalized 

coordinate (1 to 9), n is the number of constraint equations, the 

𝜆’s are the Lagrange multipliers for the constraints, the 𝑎’s are 

the coefficient in the constraint equations for each generalized 

coordinate, and the 𝐹’s are the generalized forces (friction, motor 

torques, etc.) on the generalized coordinates.  Using the chain 

rule and rewriting following the method described in [20], the 

equations become: 

 

∑(
𝑑 (𝜕𝐾

𝜕�̇�𝑘
⁄ )

𝑑𝑞𝑗

�̇�𝑗 +
𝑑 (𝜕𝐾

𝜕�̇�𝑘
⁄ )

𝑑�̇�𝑗

𝑞�̈�)

9

𝑗=1

−
𝜕𝐾

𝜕𝑞𝑘

+
𝜕𝑈

𝜕𝑞𝑘

= ∑𝜆𝑖𝑎𝑖𝑘

𝑛

𝑖=1

+ 𝐹𝑘 

(14) 

 

where j sums through the generalized coordinates. A third 

version is useful for control applications: 

 

𝑀(𝒒)�̈� + 𝑽(𝒒, �̇�) + 𝑮(𝒒) = ∑𝜆𝑖𝑎𝑗

𝑛

𝑗=1

+ 𝑭 (15) 
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where 𝑴 is the inertia matrix, 𝑽 is the Coriolis and centripetal 

vector, and 𝑮 is the gravity vector.  The matrix and vectors have 

the following terms: 

𝑴𝑘𝑗(𝒒) =
𝑑 (𝜕𝐾

𝜕�̇�𝑘
⁄ )

𝑑�̇�𝑗

 

 

𝑽𝑘(𝒒, �̇�) = ∑(
𝑑 (𝜕𝐾

𝜕�̇�𝑘
⁄ )

𝑑𝑞𝑗

�̇�𝑗)

9

𝑗=1

−
𝜕𝐾

𝜕𝑞𝑘

 

 

𝑮𝑘(𝒒) =
𝜕𝑈

𝜕𝑞𝑘

 

(16) 

 

The mechanism has static mass M (shell, frame, electronics, 

motors, etc.) and moveable masses of m each.  The translational 

(‘_t’) kinetic energies are: 

 

𝐾𝑠_𝑡 =
1

2
�̇�𝑠

𝑇
 

𝑊 𝑀 �̇�𝑠 
𝑊 =

1

2
𝑀(�̇�2 + �̇�2) 

 
(17) 

𝐾𝑖_𝑡 =
1

2
�̇�𝑖

𝑇
 

𝑊 𝑚 �̇�𝑖 
𝑊 =

1

2
𝑀(�̇�𝑖

2 + �̇�𝑖
2 + �̇�𝑖

2) (18) 

 

The sphere has moment of inertia tensor 𝑰𝑠 and rotational kinetic 

energy as: 

  

𝐾𝑠_𝑟 =
1

2
𝝎𝑠

𝑇
 

𝐵 𝑰𝑠 𝝎𝑠 
𝐵  

=
1

2
(𝐼𝑥𝑥𝑠

𝜔𝑥
2

 
𝐵 + 𝐼𝑦𝑦𝑠

𝜔𝑦
2

 
𝐵 + 𝐼𝑧𝑧𝑠

𝜔𝑧
2

 
𝐵 ) 

(19) 

 

The total kinetic energy is: 

 

𝐾𝑡𝑜𝑡𝑎𝑙 = 𝐾𝑠_𝑡 + 𝐾𝑠_𝑟 + ∑(𝐾𝑖_𝑡)

4

𝑖=1

 (20) 

The total potential energy is the combination of the energy due 

to the sphere and four masses: 

 

𝑈𝑡𝑜𝑡𝑎𝑙 = 𝑈𝑠 + ∑ 𝑈𝑖
4
𝑖=1 . (21) 

Where 

 

𝑈𝑠 = [0 0 𝑀𝑔 0] ∙ 𝒑𝑆 = 
𝑊 0 (22) 

𝑈𝑖 = [0 0 𝑚𝑔 0] ∙ 𝒑𝑖 = 
𝑊 𝑚𝑔𝑧𝑖 (23) 

 

The R-radius sphere is assumed to roll without slipping, 

implementing two nonholonomic constraint equations (𝑛 = 2): 

 

𝑓1 = �̇� − 𝑅 ∙ 𝜔𝑦𝑠
= 0 

𝑊  (24) 

𝑓2 = �̇� + 𝑅 ∙ 𝜔𝑥𝑠 
𝑊 = 0 (25) 

 

The constraint coefficients in the Lagrange Equations can be 

modeled as: 

 

𝒂1 = [
𝜕𝑓1

𝜕�̇�
⁄

𝜕𝑓1
𝜕�̇�

⁄
𝜕𝑓1

𝜕�̇�
⁄ 1 0 0 0 0 0]

𝑇

 

 

(26) 

𝒂2 = [
𝜕𝑓2

𝜕�̇�
⁄

𝜕𝑓2

𝜕�̇�
⁄

𝜕𝑓2

𝜕�̇�
⁄ 0 1 0 0 0 0]

𝑇

 

 

Defining rolling damping as 𝑏𝑟, and motor damping as 𝑏𝑚, the 

generalized forces can be written as: 

 

𝑭 =

[
 
 
 
 
 
 
 
 
 
 
 

0
0
0

−𝑏𝑟

−𝑏𝑟

𝑄1 − (
𝑏𝑚

𝑟1
⁄ )

𝑄2 − (
𝑏𝑚

𝑟2
⁄ )

𝑄3 − (
𝑏𝑚

𝑟3
⁄ )

𝑄4 − (
𝑏𝑚

𝑟4
⁄ )]

 
 
 
 
 
 
 
 
 
 
 

 

 

The generalized force, 𝐹𝑘, for each generalized coordinate can 

be formulated as: 

 

𝑄𝑘 = ∑ f𝑖 �̂�𝑖
𝑊

4

𝑖=1

.
𝜕 𝒑𝑖

𝑊

𝜕𝑞𝑘

𝑘 = 1,… , 4     (27) 

 

Where 

f𝑖 =
𝜏𝑖

𝑟𝑖
 

 

�̂�𝑖
𝑊 = 𝑻𝑖

𝑊 [0 0 1 0]𝑇 

 

(28) 

In the above equation, 𝜏𝑖 is the motor torque that actuates the 

ith mass, 𝑟𝑖 is the corresponding radius of the shaft (or pulley 

attached to the shaft), �̂�𝑖
𝑊  is the unit vector in the direction of 

individual 𝑑𝑖 expressed in the World coordinate frame.  

The equations of motion have been simulated in MATLAB.  To 

simulate the nine coordinate and two constraint equations, the 

multipliers are solved for using the x and y equations: 

 

𝜆1 = 𝑴4(𝒒)�̈� + 𝑽4(𝒒, �̇�) + 𝑮4(𝒒) − 𝐹4 

𝜆2 = 𝑴5(𝒒)�̈� + 𝑽5(𝒒, �̇�) + 𝑮5(𝒒) − 𝐹5 
(29) 

 

where the 4 and 5 subscripts signify rows of the matrices and 

vectors.  The multipliers are then substituted back into the 

remaining seven Lagrange equations (k signifies row, from 1 to 

3 and 6 to 9): 

 

(𝑴𝑘 − 𝒂1𝑘𝑴4 − 𝒂2𝑘𝑴5)�̈� 

+(𝑽𝑘 − 𝒂1𝑘𝑽4 − 𝒂2𝑘𝑽5)
+ (𝑮𝑘 − 𝒂1𝑘𝑮4 − 𝒂2𝑘𝑮5) 

= (𝐹𝑘 − 𝒂1𝑘𝑭4 − 𝒂2𝑘𝑭5) 

(30) 

 

The two constraint equations are differentiated (again using the 

chain rule): 

 

𝑑𝑓1
𝑑𝑡

=
𝑑

𝑑𝑡
(𝒂1

𝑇�̇�) = �̈� + [
𝜕𝒂1

𝑇

𝜕𝒒
�̇�]

𝑇

�̇�

= 𝒂1
𝑇�̈� + �̇�𝑇

𝜕𝒂1
 

𝜕𝒒
�̇� = 0 

(31) 
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𝑑𝑓2

𝑑𝑡
= 𝒂2

𝑇�̈� + �̇�𝑇
𝜕𝒂2

 

𝜕𝒒
�̇� = 0 

 

The differentiation is a standard method (e.g., [21]) and is needed 

to make the new inertia matrix full rank. These equations are in 

Eq. (15) form — for example, 

 

[𝒂1
𝑇]�̈� + (�̇�𝑇

𝜕𝒂1
 

𝜕𝒒
�̇�) + (0) = 0 + 0 (32) 

 

— and can be combined with the seven remaining Lagrange 

equations. With these modifications, the simulation takes the 

resulting nine equations, inverts the new inertia matrix, and 

solves for �̈�. 
 

3.  SIMULATION RESULTS 
The mechanism was symbolically derived in MATLAB and 

numerically simulated for various initial conditions and motor 

forces in order to verify the equations of motion. The simulation 

used normalized values of M = 1.0 (modeled as a homogenous 

sphere), m = 0.25 (modeled as a point mass), and R=1. The 

rolling damping and motor damping are assumed zero. Figure 4 

shows results from a free-rolling simulation with one mass 

extended (colored red in the figure).  The initial conditions for 

the simulation are: 

 

𝒒 = [0,
𝜋

2
,
𝜋

2
, 0, 0, 𝑅, 0, 0, 0]

𝑇

 

�̇� = [0, −2𝜋, 2𝜋, 0, 0, 0, 0, 0, 0]𝑇 

(33) 

 

Figure 4(a) shows the expected trend of the sphere rolling on its 

side due to the extended point mass (𝑑1 = 𝑅). Figure 4(b) shows 

the total energy in the system that remains constant as the sphere 

rolls and curves towards the unbalanced mass.  This behavior is 

expected as there is no work done on the system and all 

dissipative forces are zero. 

 

An additional method in order to verify the equations of motion 

during the simulations is checking whether the system 

constraints are satisfied or not. Figure 4(c) displays the values of 

the constraint equations that were generated due to the roll 

without slip condition of the spherical robot. The values shown 

are obtained by using the equations (24) and (25), which must be 

equal to zero at all times showing that the roll without slip 

constraints are satisfied for the considered cases. We observe that 

numerical solution of these nonlinear and coupled equations of 

motion introduce very small deviation from zero for these 

constraint equations (max. -1.6E-4).  

 

 

 

 
(a) 

 

(b) 

 

 

Figure 4. Simulation results for a free-roll 

application showing (a) the sphere’s trajectory, (b) 

energy in the system, and (c) the values of the system 

constraint equations for the no-slip condition. 

(c) 
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4.  CONCLUSIONS & FUTURE WORK 
In this paper, we presented the design of a spherical robot that 

rolls by shifting its center of mass using four cable-actuated 

masses. The equations of motions were derived using Lagrange 

formulation and verified by means of computer simulations. 

The specific design presented herein should decrease the 

overall weight of the robot by using light-weight cables as 

compared to other mechanisms that use powered-screws to 

actuate the masses, therefore, providing energy savings that 

could become imperative at critical tasks such as military and 

space applications. Along the same lines, the robot’s design 

allows to keep the overall center of mass at the geometric center 

of the sphere allowing effective tumbleweeding for further 

energy preservation.  

The future work includes creating a control architecture that 

will permit omnidirectionality without simplifications that 

potentially may limit the trajectory of the robot, and evaluating 

this control architecture using a multibody dynamics software 

such as SimscapeTM  (Mathworks). Additionally, a prototype is 

planned to be built and tested for proof of concept. 
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